Recitation 3

September 10

Problem 1. Are the following collections of vectors linearly independent?

• $\begin{bmatrix} 1\\0\\-2 \end{bmatrix}$, $\begin{bmatrix} 2\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 2\\4\\-2 \end{bmatrix}$ • $\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} -1 \end{bmatrix}$ • $\begin{bmatrix} 1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\0 \end{bmatrix}$

Problem 2. Suppose you have a 5×7 matrix. When can its columns be linearly independent? How many pivot columns should the matrix have for its columns to span \mathbb{R}^5 ?

Problem 3. State the definition of a linear transformation $\mathbb{R}^n \to \mathbb{R}^m$.

Problem 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a map sending a vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to the vector $\begin{bmatrix} x_1 + x_2 \\ x_2 - x_1 \end{bmatrix}$. Is T a linear transformation? Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a map sending a vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to the vector $\begin{bmatrix} x_1 + x_2 \\ x_2 - x_1 + 2 \end{bmatrix}$. Is F a linear transformation? What about $Z: \mathbb{R}^2 \to \mathbb{R}^2$ sending $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$? What about $S: \mathbb{R}^2 \to \mathbb{R}$ sending $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to $[x_1x_2]$? Or $Q: \mathbb{R} \to \mathbb{R}$ sending $[x_1]$ to $[3x_1]$?

Problem 5. For any matrix A one can define linear transformation T(x) = Ax. For each of the following matrices, determine dimensions of domain and codomain of corresponding transformations, and determine if each of the transformations is **onto**, **one-to-one**, or both.

•
$$\begin{bmatrix} -2 & 3 \\ 3 & 2 \end{bmatrix}$$

• $\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$
• $\begin{bmatrix} 1 & -5 & -7 \\ -3 & 13 & 5 \end{bmatrix}$
• $\begin{bmatrix} -1 & 1 \\ 2 & 3 \\ 0 & 1 \end{bmatrix}$

•
$$\begin{bmatrix} -1\\2\\4 \end{bmatrix}$$
•
$$\begin{bmatrix} -1&3&1 \end{bmatrix}$$

For each of the non-one-to-one transformations T defined by matrices above, find all vectors x that are killed by T, i.e. such that T(x) = 0.

Problem 6. Find standard matrix of the transformation T sending

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mapsto \begin{bmatrix} x_2 - 3x_3 \\ -4x_1 \\ 0 \\ 2x_3 - x_1 - x_2 \end{bmatrix}$$

What are the domain and codomain of that transformation?

Problem 7. Suppose you know that a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ sends vector $\begin{bmatrix} 1\\1 \end{bmatrix}$ to $\begin{bmatrix} 2\\4 \end{bmatrix}$, and it sends vector $\begin{bmatrix} 1\\-1 \end{bmatrix}$ to the vector $\begin{bmatrix} 0\\0 \end{bmatrix}$. Find the standard matrix of T using just the definition of linear transformation.

Problem 8. Find the standard matrix of the transformation $R: \mathbb{R}^2 \to \mathbb{R}^2$ which rotates the plane counter-clockwise by the angle $\pi/4$.

Problem 9. Find the standard matrix of the transformation $S \colon \mathbb{R}^2 \to \mathbb{R}^2$ which reflects vectors with respect to y-axis.

Problem 10. Define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which first rotates the plane counter-clockwise by the angle $\pi/4$, and then reflects it with respect to the *y*-axis. Find its standard matrix. Compare it to the product of matrices of the two previous exercises. Does the order of the product matter?

Problem 11. Define a transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ which sends each vector $v \in \mathbb{R}^3$ to its mirror image with respect to the *xy*-plane, and then rotates it around *x*-axis counter-clockwise by the angle $\pi/3$. Prove that it is indeed a linear transformation. Find the standard matrix of this transformation.